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1. Abstract 

Behaviors involving repeated investments on the part of the actor and diminishing marginal 

returns from these investments are seen to be optimized by maximizing the rate of returns from 

the behavior.  This idea, known as the marginal value theorem, was initially used to study 

foraging strategies in animals when food is available in patches in an environment.  In this study, 

we adopt the marginal value theorem and utilize it to study courtship behavior in zebrafish Danio 

rerio (with males being equivalent to foraging animals and females being compared to patches of 

resources).  Our application of the marginal value theorem to courtship in zebrafish predicted 

that a male spends less time courting a female if the female density in the environment is high 

and vice-versa.  The results of our experiments support these predictions and show that courtship 

time in zebrafish is indeed greatly influenced by the female density in the environment.  

Additionally, we went on to construct a return function in the form of the probability that a 

female being courted mates with the male courting her as a function of the time invested by the 

male in courtship (equivalently, the number of times the male physically interacts with the 

female).  This return function, in a sense, gives an idea of the sexual response of a female as the 

investment in courtship from the side of a male increases and can potentially prove the existence 

of diminishing marginal returns from repeated investments in courtship on the part of the male.     
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2. Introduction 

The quest for optimality critically shapes animal behavior.  With a Darwinian view of natural 

selection in mind (Darwin, 1859), every behavior is inevitably linked to its adaptive value.  The 

aim, therefore, running through behavioral biology is to establish the adaptive significance of 

animal behavior in addition to the proximate understanding of how a particular behavior affects 

the actor and the recipient (Tinbergen, 1963).  The ultimate adaptive question about animal 

behavior thus deals with the evolutionary process which shapes the behavior so that it maximizes 

the benefit/return to the actor. 

It is easy to see how a behavior may be adaptive if it involves a single, one-time investment on 

the part of the actor.  Darwin himself (Darwin, 1859), and other adaptive evolutionists (Dawkins, 

2009) have understood that such a behavior, if adaptive, would tend to maximize the return (and 

thereby, the reproductive fitness) to the acting organism.  Behaviors which involve multiple 

repeated investments are however not subject to such a paradigm.  It was explicitly shown by 

Eric Charnov (Charnov, 1976), and demonstrated in laboratory and field studies on foraging 

(Krebs et al. 1974; Krebs et al., 1977) that such behaviors would look to maximize the rate of 

returns to the actor.  This theorem is known as the Marginal Value Theorem in behavioral 

biology, and has been utilized to understand optimal foraging in a variety of animals (Krebs et 

al., 1974; Krebs et al., 1977), and even nutrient seeking growth of plant roots (McNickel and 

Cahill, 2009).  Humans attempting to remember and search for memories have also been recently 

studied under the framework of optimal foraging and the marginal value theorem (Hills et al., 

2012). 

Male courtship behaviors, across sexual organisms, typically involve repeated investments (in 

the form of time spent courting the female) on the part of the male.  The return, in this case, can 

be visualized as the probability that the female decides to mate with the male.  With this 

understanding, it is expected that courtship behaviors will also be subject to the marginal value 

theorem, and follow its predictions.  However, most studies of optimal mating (few in number) 

have involved the observation of the mating act itself under the purview of the marginal value 

theorem.  They have attempted to look at the optimal mating latency (duration of the mating 

bout) and its dependence on the density of females in the observed group of organisms (Parker et 
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al., 1993; personal observations with Drosophila melanogaster).  Studies attempting to 

understand courtship, in the light of optimality under the marginal value theorem have been very 

few and far between.    

The present study aims to look at the duration of male courtship behavior and its dependence on 

the density of females in zebrafish Danio rerio in the light of the marginal value theorem.  

Zebrafish, being an externally fertilizing species, offer a unique opportunity to dissect the 

applicability of the marginal value theorem in male courtship behavior.  Since fertilization occurs 

externally in zebrafish, it is reasonable to assume that mating bouts with individual females are 

approximately of the same duration.  It is then possible to clearly establish the effect of female 

density on the courtship duration, and its prediction under the purview of the marginal value 

theorem. 

Courtship behavior in male zebrafish has been characterized in quite a few studies (Darrow et al., 

2004; Spence et al., 2006a; Spence et al., 2008).  It typically involves the male initially chasing 

the female and performing certain wiggling motions.  The male also nudges the female, which 

would result in the female laying eggs if she is interested in spawning.  An uninterested female 

will move away from the nudging male – this may lead to the male re-instating his efforts to 

attract the female by chasing her.  At each instant of time during the courtship bout, the male 

needs to decide if he should continue to invest more time in courting the same female – the male 

can potentially leave the current female he is courting and go out in search of a new mating 

partner.  It is this process of continuous decision making, involving repeated investments of time, 

which makes the study of male courtship amenable under the framework of the marginal value 

theorem.   

The marginal value theorem, to be applicable, assumes diminishing returns from repeated 

investments (Charnov, 1976).  In the case of male courtship behavior, this can be interpreted as 

an assumption that the differential increase in the probability that the female will decide to 

spawn becomes smaller as the time invested by the male in courting the female increases.  This 

assumption can obviously be validated if the predictions of the marginal value theorem regarding 

the effect of female density on time invested by a male in courtship are upheld in experimental 

observations.  In this study, however, we go on to additionally note down the occurrence of 
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mating/spawning events and attempt to plot the returns from courtship as a function of time 

investment in an effort to see if they are indeed diminishing in nature.   
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3. Effect of female density on male 
courtship duration 

3.1 Marginal value theorem as applied to courtship in zebrafish 
For a behavior to be studied under the purview of the marginal value theorem, the following two 

conditions need to be satisfied (Charnov, 1976): 

1. Repeated, multiple investments should be involved on the part of the actor. 

2. There should be diminishing returns from the investments.   

As in behaviors involving a single investment-return relation, the optimal behavior in a repeated 

investment case eventually aims to maximize the total return from the behavior.  Taking dR to be 

the differential return from a differential investment of time dt, the total return from the behavior 

can be written as the integral of the differential returns over the time interval t during which the 

behavior is performed (as in Charnov, 1976): 

                ∫   
 

 
  ∫

  

  

 

 
                                                                                                                   

It is clear from this integral form of the return function that the total return R from a behavior 

which involves repeated investments of time will be greatest if the rate of returns 
  

  
 is 

maximized.  This conclusion, in combination with the assumptions of repeated investments of 

time and diminishing marginal returns from these investments, constitutes the framework of 

applicability of the marginal value theorem.  To study courtship behavior in zebrafish in the light 

of optimality, we therefore need to first confirm if the behavior conforms to the requirements of 

the marginal value theorem. 

It is obvious that courtship involves a repeated time investment on the part of the male – at each 

instant of time, the male needs to decide afresh if he should invest more time courting and 

chasing the same female.  The fact that the returns (in the form of the probability that the female 

will mate with the courting male) diminish with the investment of time indeed needs to be 

established explicitly.  However, we do realize that this mating probability initially increases 

quickly as the male invests more time in courtship, but the rate of increase decays as time goes 
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on (the female could be disinterested in mating with the courting male).  Eventually, the mating 

probability has to asymptotically approach 1 (it cannot exceed 1) – this inference itself 

demonstrates that the marginal increase in the mating probability has to decrease as the time 

invested by the male in courtship increases. 

Taking a representative explicit example to model this situation, we consider the rate of change 

of the probability that a female will mate with a courting male to be proportional to the 

difference between the current value of the mating probability and 1 (the maximum value of the 

mating probability).  In this case, as required, rate of increase of the mating probability decays as 

time goes on and the probability approaches 1.  Thus if P is the mating probability and c is the 

constant of proportionality, we can write: 

  

  
                                                                                                                                                             

Separating variables and integrating both sides of the equation, we get: 
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Figure 3.1 

From Figure 3.1, it can be that seen in this case, the differential increase in the mating probability 

diminishes as the time invested by the male in courtship increases and the probability approaches 

1 asymptotically.  The constant c can be understood as the rate at which the mating probability 
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increases initially (when P ≈ 0) – if c is small, the initial increase in the probability function is 

slow.  However, irrespective of the value of c, the function approaches 1 asymptotically.   

Any mating probability function of this form allows us to apply the marginal value theorem to 

study male courtship behavior – although the exact nature of the mating probability may be 

somewhat different, we will use the function discussed in Figure 3.1 taking c = 1 to graphically 

highlight the predictions which arise out of the marginal value theorem.  In our analytical 

calculations, however, we will use a generalized form of the mating probability function P(t) to 

make it explicitly clear that such an analysis is perfectly applicable to all forms of the mating 

probability as long as it involves diminishing marginal/differential returns from repeated 

investments of time. 

Starting the analysis on the marginal value theorem framework, we let: 

Time spent searching for the female = TS 

Time spent mating with the female = TM 

Time spent courting the female = TC 

Time spent actually mating = TAM 

 TM = TC + TAM  

Return function = F(TM) 

Probability function = P(TC)  

         
     

     
  

     

         
                                                                                                       

Since fertilization is external in zebrafish, we can reasonably assume that TAM is the same in all 

cases and therefore, account for it within TC.  TC is then the main contribution to the male 

investment.  In this scenario, the return function becomes dependent on TC instead of TM as 

follows: 
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The marginal value theorem now requires the maximization of the return function F(TM) as in 

(3.5): 

     
    

     
        

       
  

      
   

   

This yields the critical courtship time TC* as: 

  
   

    
  

     
  

                                                                                                                                              

We now claim that this critical time TC*, which maximizes the rate of returns to the male, can be 

read off from the graph of the mating probability function versus the time invested by the male in 

courtship shown in Figure 3.1 with c = 1.  This critical time is shown in a modified form of 

Figure 3.1, as below: 

 

Figure 3.2 

The critical time TC* and the value of the probability function P(TC*) at that time is indicated in 

Figure 3.2.  TC* is given by the point of intersection between the straight line tangent to P(TC) 

and passing through the points (-TS,0) and (TC*,P(TC*)) as shown in Figure 3.2.  To understand 

this claim, let us attempt to find the slope of this straight line.  The slope will be: 
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Since this straight line is tangent to P(TC) at TC*, its slope is also equal to P′(TC*).  Equating this 

to m, we get: 

   
    

  

     
       

   

This yields, 

  
   

    
  

     
  

                                                                                                                                              

We see that this expression for the critical time is identical to that derived previously in (3.6) 

showing that the critical courtship time can indeed be read off from the mating probability curve, 

if the search time TS is known. 

Having worked out this graphical way of interpreting the critical time for courtship, we go on to 

see its variation with changes in the time spent in searching for a female TS, as follows: 

 

Figure 3.3 

Figure 3.3 shows two cases – one with a longer search time (in red) and the other with a shorter 

search time (in green).  We can clearly see from the figure that the critical courtship time is 
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shorter than previously when the search time is shorter (green) and longer when the search time 

is longer (red).  The previous search time, and critical courtship duration are marked as TS and 

TC* respectively. 

Since the time spent by the male in searching for a female would be longer if the number of 

females present is smaller and vice versa (assuming all other environmental factors to be 

unchanged)¸ the marginal value theorem yields testable predictions about the male courtship 

duration as a function of the density of females present.  It predicts that this duration would be 

smaller when the density of females is high and higher when the density of females is low.  This 

prediction emanating from the marginal value theorem was subjected to experimental scrutiny as 

part of this study which we now describe. 

3.2 Materials and methods 
3.2.1 Zebrafish populations: 

The population of zebrafish Danio rerio used in our experiments was procured from a local fish 

vendor in Kanchrapara in North 24 Parganas district (West Bengal, India).  This population of 

adult fishes had been maintained by the aforementioned vendor in his aquarium facility for a 

period of two-three months before our purchase.  This is a mixed population of zebrafish isolated 

from nearby stagnant water bodies located in Halisahar (District North 24 Parganas, West 

Bengal, India) and Ranaghat (District Nadia, West Bengal, India). 

3.2.2 The observation room and experimental arena 

For setting up the experimental arena, a fish tank of dimensions 48′′×12′′×9′′ was divided into 

several sections as shown in Figure 3.4 below: 

 

Figure 3.4 
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As shown in Figure 3.4, a partition was inserted to divide the tank into two equal halves along its 

length.  One of the resultant chambers was utilized for setting up aquaria instruments such as air 

pumps and heaters to maintain air circulation within the aquarium water and regulate its 

temperature.  A thermometer to measure the water temperature was also set up in this chamber.  

The other long chamber was further subdivided into two equal sized halves – one of these sub-

chambers housed a variable number of female zebrafish (0 or 12 depending upon the 

experimental set).  Its equivalent counterpart chamber was further subdivided into two more 

smaller equal sized chambers – the chamber closest to the one housing a variable number of 

female zebrafish was utilized to house a lone male zebrafish.  The chamber farther away housed 

a lone female zebrafish and a removable spawning site (SS in Figure 3.4).  The spawning site 

consisted of a petri plate filled with moderate sized gravel.  Female zebrafish have been 

previously seen to preferentially oviposit in places which can potentially provide shelter and 

protection to the fertilized eggs after they are laid – the presence of gravel (the eggs, as they are 

laid, get hidden and sheltered between the pieces of gravel) in the spawning site has been shown 

to result in significant preference during oviposition (Lawrence, 2007; Spence et al., 2007).  

Consequently, it is expected that most of the spawning would occur over this petri plate.  All the 

partitions used to create the various chambers were transparent and removable – this resulted in 

open exchange of water between the different chambers of the tank.  Such exchange of aquarium 

water and unhampered vision through transparent partitions ensured free communication through 

visual, olfactory and hormonal cues which are known to play an important role in zebrafish 

spawning (Chen and Nartinich, 1975; van den Hurk and Lambert, 1983; Gerlach, 2006).  

However, the fish were unable to move out of the chamber in which they were housed unless a 

partition was removed.   

The temperature in the observation room, which housed the experimental setup, was maintained 

in a range of 24–30 °C which is considered as the optimum for rearing zebrafish (Matthews et 

al., 2002).  Additionally, a 14:10 hr light-dark (LD) cycle was maintained in the room with lights 

coming on at 0800 hr and going off at 2200 hr each day.  A long photoperiod LD cycle has been 

previously seen to promote spawning – zebrafish oviposition circadian rhythms are seen to 

entrain to a 14:10 hr LD cycle (Blanco-Vives et al., 2009).   

3.2.3 Setting up of experiments and video recordings  
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Before setting up spawning experiments with different densities of females in the arena to test 

the predictions of the marginal value theorem, we separated out males and females from the 

original stock populations and kept them isolated as two different populations in the observation 

room for 7-10 days prior to the start of experiments.  Sexual separation in this form is often seen 

as a positive factor to encourage spawning in zebrafish when the sexes are brought together – a 

long separation period of the order of 15-20 days was, however, avoided as it can result in 

females getting egg-bound and unable to oviposit thereafter (Spence et al., 2008).  The tanks 

housing these separated populations were covered on three sides with brown paper in order to 

prevent the exchange of visual communication cues. 

Zebrafish are known to spawn primarily within the first hour of light each day both in the 

laboratory (Selman et al., 1993) and in the wild (Spence et al., 2006b).  Consequently, we 

removed the partition between the lone male and female in the arena as soon as lights came on at 

0800 hr each day and recorded the behavior of the fishes for the next 30 minutes.  The 

experimental arena was set up in the evening prior to the recording in order to allow the fishes to 

get accustomed to their surroundings overnight.  The experiment was repeated multiple times in 

two different sets – one set had no females and the other had 12 females in the large chamber 

housing a variable number of females as shown in Figure 3.4.  Additionally, there were two 

separate identical arenas in which experiments were simultaneously performed each day.  

Since the fishes are expected to primarily spawn over the spawning site (SS in Figure 3.4) 

containing gravel (Lawrence, 2007; Spence et al., 2007), we went on to manually analyze the 

recorded videos and noted down the total time which the male and female spent together in close 

proximity to the spawning site (when the male, female and spawning site would be within one 

body length of each other).  This time, as a fraction of the total recording time each day, gave us 

a measure of the time spent by the male in courting and mating with the lone female in two 

different situations – one with a single female and the other with 13 females in total in the arena.  

We then compared this time, under the two different female densities, in order to test compliance 

with the predictions of the marginal value theorem.  At the conclusion of each trial, we 

additionally checked the spawning site for the presence of fertilized eggs – recordings from the 

days when eggs were not seen in the spawning site were left out from the final analysis.  
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A single set of the male and females was not used in more than two consecutive experimental 

days.  The males and females used in an experiment were separated once again after the 

conclusion of the experimental run and were kept isolated for 7-10 days before being allowed to 

participate in experiments again.         

3.2.4 Statistical analyses 

The percentage time spent by the male courting and mating with the female and the number of 

eggs laid in the spawning site under the two different female densities were statistically 

compared using the Mann-Whitney U test.  p < 0.05 was considered as the level of statistical 

significance.  The statistical analyses were implemented using the statistical module of 

SigmaPlot (version 11.0) for Windows (Systat Software Inc., 2008). 

3.3 Results 
The percentage time spent by the male around the female physically accessible to it in close 

proximity to the spawning site given two different total number of females (1 or 13) in the 

experimental tank is shown in Figure 3.5 below: 

 

Figure 3.5 

The percentage time of the total recording time each day spent by the male in proximity with the 

accessible female and the spawning site is seen to be 74.4 ± 1.4% (mean ± SEM) when there is 
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only one female in the experimental tank.  This percentage decreases to 18.22 ± 1.32% (mean ± 

SEM) when the experimental arena houses 13 females in total.  The Mann-Whitney U test 

reveals a significant difference between the percentage time under the two different female 

densities (p=0.008).  This difference is in accordance to the marginal value theorem which had 

predicted that the percentage time would be smaller if there were a larger number of females in 

the environment (and hence, the time that the male would need to invest in searching for a 

female would be small) and vice-versa. 

However, we do not see any significant difference between the number of eggs laid in the 

spawning site under the two female densities (p=0.421).  74.6 ± 16.9 and 47 ± 10.7 eggs (mean ± 

SEM) are seen to be laid when there are a total of 1 and 13 female in the experimental tank 

respectively (shown in Figure 3.6 below): 

 

Figure 3.6 

 

Figure 3.7 shows a scatter plot of the number of eggs laid by the female physically accessible to 

the male against the percentage time spent by the male in proximity to this female and the 

spawning site.  As expected from the conclusion in Figures 2.5 and 2.6, we can clearly 

distinguish a big difference between the two female densities along the percentage time axis but 

no such separation along the number of eggs axis.  However, the large variance in the number of 

eggs laid in both the experimental setups shows that it is important to get data from a larger 

number of replicate experiments to be able to reach a clear conclusion on this issue.     
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4. Investment-return relation in 
courtship behavior 

The marginal value theorem, to be applicable in the case of a behavior involving repeated 

investments on the part of the actor, assumes that the marginal/differential returns from these 

investments diminish.  In the previous chapter, we showed that the differential returns (in the 

form of the probability that a female decides to mate) from repeated investments of time on the 

part of a male in courting a female are most likely diminishing in nature.  With this 

understanding in mind, we went ahead to apply the marginal value theorem to the study of 

courtship behavior in zebrafish and came up with experimentally testable predictions regarding 

the time that a male would invest in courting a female as a function of the total number of 

females in the environment.  The results from these experiments were seen to uphold the 

predictions from the framework of the marginal value theorem, and thereby, yield clear support 

to the idea of diminishing marginal returns from repeated time investments during male 

courtship behavior. 

It would, however, be very interesting to attempt to experimentally find out the marginal returns 

(mating probabilities) as a function of the time invested by a male in courting a female and 

visualize the exact nature of this return function.  In this part of the study, therefore, we aim to 

carry out suitable observations designed to eventually yield the return function in the form of 

mating probabilities and check if the marginal returns indeed diminish as the time invested in 

courtship keeps on increasing. 

4.1 The quantity to be experimentally measured and the form of the 

dataset 
Ideally, we would like to plot the probability that the female being courted decides to mate with 

the courting male as a function of the time that the male invests in courtship.  However, in actual 

observations, we find that individual interactions between the male and female are very short in 

nature and it is very difficult to note down the lengths of these individual interactions without 

significant variation across observers.  During the courtship ritual, however, the male physically 

pushes and nudges the female with his snout in an attempt to urge her to spawn (Darrow et al., 
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2004).  We find that it is possible to uniquely count the number of these physical interactions and 

use it as a surrogate for the time invested by the male in courtship.  This use of a surrogate is 

reasonable because it is clear that as the time invested by the male in courtship increases, the 

number of these physical nudges and pushes increase too – therefore, a direct proportionality 

between these two quantities exists.  Consequently, we went on to collect data so as to be able to 

plot the returns in the form of mating probabilities as a function of the number of physical 

interactions between the male and the female instead of the time invested by the male in 

courtship. 

With the above ideas in mind, we recorded the behavior of the male and female at a resolution 

high enough to enable us to clearly see and uniquely note down the occurrence of a spawning 

event.  We followed this by counting the number of male-female physical interactions between 

two consecutive spawning events.  Thus, our data set finally consisted of a string of physical 

interactions in time interspersed with spawning instances, as shown in Figure 4.1 below with 

dashes indicating physical interactions and S indicating spawning events: 

S-----S----------S---S------S--------S--S------S-------------S 

Figure 4.1 

4.2 Materials and methods 
The zebrafish populations used and conditions maintained in the observation room are identical 

to those described in the previous chapter. 

4.2.1 The experimental arena 

We housed the fishes in a tank of dimensions 7.5′′×4′′×8′′ shown as follows in Figure 4.2: 

 

Figure 4.2 
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A transparent partition separated the experimental tank into two equally sized chambers along its 

longer dimension housing a male and a female respectively.  The spawning site was placed on 

the side of the female as described in the previous chapter. 

4.2.2 Setting up of experiments and video recordings  

The experimental protocol and the procedure of recording the behavior of the male and the 

female was very similar to that described in the previous chapter.  In this part of the study, 

however, we recorded behavior at a much higher resolution than previously in order to enable us 

to identify oviposition events clearly.  Additionally, it was possible to cover the entire 

experimental arena in these recordings – consequently, we could note down any rare spawning 

events which happened outside the spawning site as well. 

The recorded videos were then manually analyzed by two independent observers who noted 

down the times at which spawning took place as well as the number of physical interactions 

between consecutive spawning events.  This generated the data set in the form we described in 

Figure 4.1.  Any discrepancy between the counts of physical interactions noted down by the two 

independent observers was resolved by taking the average of the two observations and rounding 

it off to the closest whole number. 

4.2.3 Analysis of the data set and plotting the return function  

After generating the data set in the form shown in Figure 4.1 from our experiments, we went on 

to plot the frequency distribution f(n) of the number of male-female physical interactions 

interspersed between two consecutive spawning instances n.  The normalized form of this 

frequency distribution therefore gave us the probability distribution p(n) of the inter-spawning 

number of physical interactions between the male and the female n. 

However, p(n) is clearly not the return function (as probability of mating/spawning) we are 

attempting to plot in this part of the study.  The return function (with the return being the 

probability that a female will mate with the male courting her) we are trying to find actually plots 

the probability of the number of physical interactions n between consecutive mating events given 

that the previous n-1 interactions have been unsuccessful (they have not resulted in spawning).  

Therefore, the return function is actually a conditional probability distribution which we have to 

derive from the distribution p(n) which we now proceed to do. 
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Using the definition of conditional probability, we can write: 

   |                   
                     

                   
                                                                  

Since the events where two consecutive spawning instances were separated by n physical 

interactions are also the ones where the previous n-1 have been simultaneously unsuccessful, we 

can now write:  

                            
    

               
                                                                  

Also, all the instances where the number of physical interactions between two consecutive 

mating events is greater than or equal to n are those where n-1 interactions have been 

unsuccessful in causing the fishes to spawn.  Therefore: 

                            
      

               
                                                             

Putting (4.2) and (4.3) back into (4.1), we get: 

   |                   
    

      
                                                                    

The return function r(n) which we want to plot is therefore of the form given in (4.4). 

4.3 A representative simulation 
We started off our study of the return function by carrying out a representative computer 

simulation in order to create a baseline against which our experimental observations could be 

compared.  In this simulated experiment, we assumed fishes to be moving randomly inside the 

experimental arena and considered their collisions to be equivalent to physical interactions like 

nudges and pushes.  We assumed that the underlying distribution of the probability that a female 

being courted will mate with the courting male as a function of the number of physical 

interactions between them is diminishing in nature.  By comparing the return function obtained 

by analyzing the data generated by the simulation to the mating probability distribution fed in a 

priori, we could additionally confirm that the calculations we are employing to generate the 
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return function from the initial frequency distribution (as shown in the previous section) are 

correct.  Greater details regarding the parameters used in this simulation can be obtained from 

the copy of the code of the program attached in appendix A.1.  The computer program for the 

simulation was written in the freely available python programming language (version 2.5.1) for 

Windows (van Rossum, 2003).   

Figure 4.3 shows the frequency distribution of the number of physical interactions between two 

consecutive spawning events.  In this representative simulation, we have assumed that the 

underlying probability distribution of mating has the form p(n) = 1-e 
– 0.1n

.  As we have seen 

previously, this distribution is diminishing in nature.  
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Figure 4.3 

From Figure 4.3, it is clear that this frequency distribution, being discrete in nature, has the form 

of a Poisson distribution.  The frequency distribution obtained from this representative 

simulation can, therefore, provide a baseline for comparing the experimental distribution and 

deciphering the extent of non-randomness in actual situations of spawning in zebrafish. 

Figure 4.4 shows the return function (in the form of the probability that a female being courted 

will mate with the courting male) as a function of the number of physical interactions n between 

them.  The return function is calculated from the frequency distribution obtained from the 

representative simulation according to the procedure outlined in the previous section.  The figure 
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additionally plots the mating probability function fed into the program a priori.  The close match 

between the calculated return function and the a priori probability distribution clearly shows that 

our method of calculating the return function is correct. 
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Figure 4.4 

The probability of mating for the largest number of interactions (here 16) is seen to suddenly 

increase to 1.  This apparent anomaly is actually an artifact of our attempt to calculate the return 

function (which has an infinite domain, extending from 0 up to infinity) from a finite dataset.  As 

can be seen from the calculations described in the previous section, the return function r(n) will 

always be equal to 1 at the largest possible value of n.  The function essentially gets truncated at 

a finite value of n instead of extending up to infinity (where the probability tends to 1 in our 

assumed a priori probability function). 

4.4 Experimental results 
The frequency distribution of the number of male-female physical interactions between two 

consecutive spawning/mating events is shown in Figure 4.5 below.  The frequency distribution 

initially does seem to increase just as in the case of the representative simulations – however, the 

number of observations are clearly too small to make any unambiguous conclusions about its 

shape and nature.  
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Figure 4.5 

Figure 4.6 shows the return function calculated from this frequency distribution in the form of 

the mating probability at the n
th

 interaction.  We can see that this function is clearly increasing in 

nature as expected – however, once again, the number of observations seem to be too small for 

us to be able to decipher its diminishing nature clearly.  However, with probability being a 

bounded quantity (with its upper bound at 1), we can reasonably expect the increasing trend to 

distinctly display diminishing returns once we have more data from the experiments presently in 

continuation. 
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5. Conclusions and discussion 

Optimality forms an over-arching concept in animal behavior.  In the case of behavior involving 

repeated investments and diminishing marginal returns from them, Charnov (1976) showed 

optimal behavior attempts to maximize the rate of returns from these investments.  The marginal 

value theorem, as it is called, then yields experimentally testable predictions about the optimal 

behavior. 

In this study, we aimed to study courtship behavior in zebrafish Danio rerio under the optimality 

framework.  The marginal value theorem, in this case, indicated to us that the time invested by a 

male in courting a female would be smaller if the male required less time to search for the female 

and vice versa.  As it is clear that the time needed to search for a female would be smaller if the 

female density in the environment is high and vice versa, we predicted that the courtship time 

would be smaller when the female density is high than when it is low.  Our experiments, which 

allowed a male physical access to only one female while simultaneously presenting him with 

visual, chemical, hormonal and olfactory cues from a variable number of other females 

unequivocally showed that the male spent significantly less time courting the physically 

accessible female when the total number of females giving him sensory cues was large and vice 

versa (Figure 3.5).  Unlike other previous studies (Parker et al., 1993), our study of mating under 

the optimal behavior framework is uniquely able to separate out and subject courtship to the 

analysis of the marginal value theorem.  It takes advantage of the fact that zebrafish is an 

externally fertilizing species – in this case, the actual length of the mating bout is extremely 

small and the variation in the time invested in courtship as a function of female density in the 

environment can be clearly tweezed out.   

Though the support for the predictions of the marginal value theorem confirm the presence of 

diminishing marginal returns from repeated investments, we went on to attempt to construct the 

return function directly from experimental observations.  In the case of courtship behavior in 

zebrafish, the return function would plot the probability that a female will mate with a courting 

male as a function of the time invested by the male in courtship.  We, however, due to 

experimental limitations, decided to plot the returns as a function of the number of physical 

interactions (such as pushes and nudges) between the male and the female as a surrogate for the 
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time invested by the male in courtship.  This was done with the understanding that a direct 

proportionality exists between the time invested by a male in courtship and the number of 

physical interactions between the male and the female.  A representative simulation, with fishes 

assumed to be moving randomly like balls in a box showed that the frequency distribution of the 

number of physical interactions between two consecutive mating instances was Poisson in nature 

(Figure 4.3).  The return function from the experimental observations appears to be increasing in 

nature – however, the number of observations in our data set presently seems to be insufficient to 

clearly indicate if the marginal returns are diminishing in nature (Figure 4.6). 

This study, to our knowledge, is the only attempt to directly construct such a return function 

from experimental observations.  In some sense, the return function, by plotting the probability 

that a female being courted will mate with the male courting it, reveals the female’s sexual urge 

towards the male.  Although the data set is small at the present juncture, our continuing 

observations can potentially provide enough data for us to make valid conclusions about the 

nature of a female zebrafish’s sexual response to a male through the form of the return function. 

It has to be kept in mind, however, that our attempt to construct the return function from 

experimental observations is based firmly on the assumption that a female’s method of 

estimating its probability of mating with the male does not change significantly with time.  In 

other words, we have assumed that the form and nature of the return function does not vary 

greatly between different sets of males and females, and does not change enormously from one 

mating event to the next.  For instance, this would mean that if the return function is diminishing 

in nature, it is of this form for all the females we observed.  It is this assumption which allows us 

to pool the data of physical interactions from replicate sets of observations and construct the 

frequency distribution of the form shown in Figure 4.5.  This assumption seems quite reasonable 

since the return function is an inherent property of courtship behavior in zebrafish which is 

genetically determined and therefore, reasonably similar across individuals isolated from the 

same geographical area and mating events.  It is, therefore, highly unlikely that there will be 

enormous variance in the way in which repeated investments of time in courtship from a male’s 

side is interpreted by a female giving rise of very different forms of the return function across the 

observed individuals and with time. 
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It is, at this juncture, important to understand how an optimal mating and courtship strategy, 

according to the marginal value theorem, yields itself to adaptive evolution by maximizing the 

fitness of the individual adopting it.  It is clear that the ultimate goal of courtship behavior on the 

part of the male is to produce a successful mating/spawning event.  The reproductive fitness of a 

male is well accepted to be maximized by the maximization of the number of successful mating 

events he can participate in (Bateman, 1948).  Therefore, the form of courtship which maximizes 

the overall probability of successful mating (or equivalently, the total number of mating events 

that a male participates in) is the one which is optimal in the sense of maximizing reproductive 

fitness and is selected for.  The marginal value theorem predicts that optimal courtship behavior 

will dictate that the male spends less time courting each female if there are a large number of 

females available to him – in a sense, a male, under conditions of high female density, is 

susceptible to stop courting a female and go out in search for a new mate much earlier than if the 

female density in the environment is low.  For any environment, we can calculate the total 

amount of resources available – in our case, this is equivalent to the number of females present, 

with the females being bearers of the resources (eggs) which the males aim to fertilize.  It is now 

clear that the amount of resources available in an environment is much higher if the female 

density is high.  In such a scenario, we can find out an average rate of returns through the 

utilization of resources (in the form of the probability of the occurrence of a successful mating) 

as a male invests time in courtship – this will be much lower in the situation with a smaller 

number of females being present.  Therefore, even though the individual return function (r(n) in 

our studies) may not change across different females, the marginal returns from increased time 

investment in courtship on the part of the male become smaller than the average returns for the 

entire environment much later if the number of females present is small (and hence, the average 

returns are small too).  Following on the inference that the behavior which confers maximum 

reproductive fitness to a male will maximize the overall probability of successful mating, we 

expect that such a behavior will ordain that a male persists to court the same female as long as 

the marginal returns from the courtship are higher than the average returns from the environment 

(returns are in the form of the mating probability, as has been throughout this study).  It 

immediately becomes clear that such a behavior will result in a male investing more time to court 

a female when the female density is low and vice-versa as in such an environment, the marginal 

returns from courting an individual female will go below the average returns for the environment 
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much later just because the returns from the environment, on an average, are low.  It is now 

abundantly clear, with this complimentary understanding, that the optimal behavior as described 

by the marginal value theorem is simultaneously the one which maximizes the average 

probability of a successful mating, and thereby, the male’s reproductive fitness.  This is exactly 

identical to Charnov’s (1976) alternative interpretation of the marginal value theorem wherein he 

inferred that an environment with a smaller number of patches of food will have a lower average 

rate of returns than one in which patches of food are more numerous.  The marginal returns from 

the utilization of single patch by a foraging animal will become less than the average returns 

much later when the number of patches in the environment is small – the forager is then, 

according to the marginal value theorem, expected to spend more time foraging at each patch of 

food.  A more generalized form of such an interpretation in the context of emigration thresholds 

is expanded upon in Parker and Stuart, 1976.      

In essence, in this study, we aimed to investigate courtship behavior in zebrafish and attempted 

to see if the marginal returns from repeated investments of time by a male in courtship are 

diminishing in nature as required by the marginal value theorem.  The results from our 

experimental studies offer strong support to optimal behavior being shaped by the marginal value 

theorem.  Additionally, the trends observed in our attempt to measure the returns from repeated 

investments of a male’s time in courtship deem it very possible that diminishing marginal returns 

from these investments will be distinguished once a large enough data set has been gathered.                    
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A.1. Python code to simulate random 
mating in zebrafish 

Our simulation assumed fishes to be moving randomly like balls in a box.  Any collisions (when 

the fishes would approach within a certain threshold distance of each other) were taken as 

physical interactions between them.  The a priori mating probability function was assumed to be 

p(n) = 1 – e
-0.1n 

 where n is the number of physical interactions between the fishes.  Additionally, 

this simulation is a two-dimensional abstraction of the realistic behavior of fishes – in this case, 

the fishes move randomly on a plane.  The simulation also assumes periodic boundary conditions 

– essentially, each time a fish hits the boundary of the arena during its random motion, it re-

appears at the opposite boundary. 

from random import * 
from math import * 
 
#Output file 
g=open('B:/MSproject/Simulations/Random/test.out','w') 
#Defining arena parameters 
l=20.0 
h=12.0 
 
#Defining the mating probability function: 
def feeling(n): 
 value=1-exp(-0.1*n) 
 return value 
  
#Initiating fishes 
f=[] 
m=[] 
f.append(l*random()) 
f.append(h*random()) 
m.append(l*random()) 
m.append(h*random()) 
 
#Time parameters 
t=0 
dt=1 
 
#Step parameter 
ds=1.0 
 
#Distance parameter 
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d=0.0 
 
#Interaction parameters 
n=0 
dthreshold=0.5 
 
 
#Probability parameter 
p=0.0 
 
#Time evolution 
while t<=10000000000: 
 #Choosing random direction 
 ftheta=2*pi*random() 
 mtheta=2*pi*random() 
  
 #Updating coordinates 
 (f[0],f[1])=(f[0]+ds*cos(ftheta),f[1]+ds*sin(ftheta)) 
 (m[0],m[1])=(m[0]+ds*cos(mtheta),m[1]+ds*sin(mtheta)) 
 
 #Checking if boundary is hit 
 #right 
 if f[0]>l: 
  f[0]=f[0]-l 
 if m[0]>l: 
  m[0]=m[0]-l 
 #left 
 if f[0]<0: 
  f[0]=f[0]+l 
 if m[0]<0: 
  m[0]=m[0]+l 
 #top 
 if f[1]>h: 
  f[1]=f[1]-h 
 if m[1]>h: 
  m[1]=m[1]-h 
 #bottom 
 if f[1]<0: 
  f[1]=f[1]+h 
 if m[1]<0: 
  m[1]=m[1]+h 
  
 #Calculating distance 
 d=sqrt((f[0]-m[0])**2+(f[1]-m[1])**2)  
  
 #Checking for collision 
 if d<dthreshold: 
  n=n+1 
  #Monte Carlo for mating 
  p=feeling(n) 



36 
 

  if p>=random(): 
   print>>g,n 
   n=0 #Assuming that independent matings are separate 
stochastic processes 
 
 t=t+dt 
 
g.close() 

  
 


