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Systems/Circuits

The Behavioral Relevance of Cortical Neural Ensemble
Responses Emerges Suddenly

Brian F. Sadacca,> Narendra Mukherjee,' Tony Vladusich,? Jennifer X. Li,' Donald B. Katz,"** and “Paul Miller>**
Departments of 'Psychology and 2Biology and *Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02453

Whereas many laboratory-studied decisions involve a highly trained animal identifying an ambiguous stimulus, many naturalistic
decisions do not. Consumption decisions, for instance, involve determining whether to eject or consume an already identified stimulus in
the mouth and are decisions that can be made without training. By standard analyses, rodent cortical single-neuron taste responses come
to predict such consumption decisions across the 500 ms preceding the consumption or rejection itself; decision-related firing emerges
well after stimulus identification. Analyzing single-trial ensemble activity using hidden Markov models, we show these decision-related
cortical responses to be part of a reliable sequence of states (each defined by the firing rates within the ensemble) separated by brief
state-to-state transitions, the latencies of which vary widely between trials. When we aligned data to the onset of the (late-appearing) state
that dominates during the time period in which single-neuron firing is correlated to taste palatability, the apparent ramp in stimulus-
aligned choice-related firing was shown to be amuch more precipitous coherent jump. This jump in choice-related firing resembled a step
function more than it did the output of a standard (ramping) decision-making model, and provided a robust prediction of decision
latency in single trials. Together, these results demonstrate that activity related to naturalistic consumption decisions emerges nearly

instantaneously in cortical ensembles.
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ignificance Statement

This paper provides a description of how the brain makes evaluative decisions. The majority of work on the neurobiology of
decision making deals with “what is it?” decisions; out of this work has emerged a model whereby neurons accumulate information
about the stimulus in the form of slowly increasing firing rates and reach a decision when those firing rates reach a threshold. Here,
we study a different kind of more naturalistic decision—a decision to evaluate “what shall I do with it?” after the identity of a taste
in the mouth has been identified—and show that this decision is not made through the gradual increasing of stimulus-related
firing, but rather that this decision appears to be made in a sudden moment of “insight.”
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Introduction

Most neuroscientific studies of decision making involve training
animals to recognize some physical property of a stimulus, such
that they saccade or poke their nose discriminatively once the
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identity of a stimulus has been determined. Such studies have
revealed important neural correlates of decisions: firing rates in
relevant neurons begin to reflect the decision within 200 ms,
appearing to “ramp” to a decision threshold with a slope com-
mensurate to task difficulty (Shadlen and Newsome, 2001; Huk
and Shadlen, 2005; Kiani et al., 2008; but see Latimer et al., 2015).

Taste-related decisions, in contrast, require no training: when
a taste is presented, even via intraoral cannulation, a rat necessar-
ily makes a decision: it rates the palatability of the taste, deciding
whether the taste object is worthy of consumption; this psycho-
logical property is exquisitely sensitive to a large range of experi-
ential variables (Berridge et al., 1984; Galef, 1986; Spector et al.,
1988; Breslin et al., 1993; Fortis-Santiago et al., 2010), and as such
can only be made subsequent to identification of stimulus iden-
tity. Thus, even easy taste-palatability decisions often have 5-10
times the latency (~1s) of similarly easy stimulus-identification
decisions (Hanes and Schall, 1996; Ratcliff et al., 2003; Uchida
and Mainen, 2003).
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Our studies of this paradigm have focused on gustatory cortex
(GC) and other forebrain structures situated between basic sen-
sory regions and the motor centers controlling the production of
discriminative oral behaviors that signal that a decision has been
made. Taste-related firing in GC jibes well with the above de-
scription of the decision process, as identity-related firing
emerges within 200 ms of stimulus presentation, and 800 ms
before the production of decision-specific orofacial behaviors
(Katz et al., 2001; Sadacca et al., 2012). Between these two time
points, GC firing reorganizes, coming to reflect the palatability
decision in a manner that, according to standard analyses, begins
~500 ms following taste delivery, becomes significant at ~800
ms, and asymptotes before the emission of choice-specific behav-
ior (Piette et al., 2012; Sadacca et al., 2012); that is, GC decision-
related activity emerges in an apparent ramp preceding behavior,
much as activity in lateral intraparietal cortex ramps preceding
visual motion perception decisions.

In the case of GC taste responses, however, this ramp may be
an artifact of across-trial averaging. Ensemble recordings in
awake rats have suggested that taste responses are actually better
described as sequences of quasi-stable firing-rate “states,” with
interstate transitions that occur suddenly, but at highly variable
trial-to-trial latencies (Jones et al., 2007; Escola et al., 2011; Mo-
ran and Katz, 2014). Because firing-rate ramps appear artifactu-
ally in across-trial averages under such circumstances (Miller and
Katz, 2010), it becomes reasonable to ask whether GC responses
will predict consumption decision making with analogous sud-
denness, rather than following a substantial ramp, if analyzed in
just such a way.

Testing this hypothesis requires analysis of simultaneously re-
corded ensembles of neurons, because sudden firing rate shifts
are notoriously difficult to discern when single neurons are re-
corded individually (Okamoto et al., 2007). Here we performed
precisely this analysis, applying a tool [hidden Markov (HM)
modeling (HMM)] that identifies discrete states underlying en-
sembles of spike trains (Abeles et al., 1995; Jones et al., 2007;
Kemere et al., 2008; Bollimunta et al., 2012; Ponce-Alvarez et al.,
2012; Moran and Katz, 2014) to GC taste responses. By this anal-
ysis, decision-related firing is indeed revealed to emerge in sud-
den firing-rate transitions, which, while varying widely in latency
from trial to trial (Jones et al., 2007), are more similar to transi-
tions predicted by a step-function model than by the dominant
ramping model of decision making [the drift diffusion model
(DDM); Hanes and Schall, 1996; Thompson et al., 1996; Shadlen
and Newsome, 2001; Huk and Shadlen, 2005]. Furthermore, the
latency of this state in single trials provides an excellent predic-
tion of the onset of choice-related behavior. Thus, these data
suggest that the evidence of a decision to consume or expel a taste
stimulus appears in cortex with a suddenness approaching
instantaneity.

Materials and Methods

Experimental design

Subjects

Female Long—Evans rats (n = 11, 2 in initial modeling, 9 with electro-
myography; 280-320 g at time of surgery) served as subjects in this study.
Rats were maintained on a 12 h light/dark schedule and were given ad
libitum access to food (and restricted access to water where specified). All
methods complied with the Brandeis University Institutional Animal
Care and Use Committee guidelines.

Surgery
Rats were anesthetized using an intraperitoneal injection of a ketamine/
xylazine/acepromazine mixture (100, 5.2, and 1 mg/kg, respectively),
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with supplemental intraperitoneal injections administered as needed.
The anesthetized rat was placed in a standard stereotaxic device, where its
scalp was excised, and holes were bored into its skull for the insertion of
0-80 ground screws and electrodes. Multielectrode bundles (16
nichrome microwires attached to a Microdrive; Katz et al., 2001) were
inserted 0.5 mm above GC. Once in place, the assemblies were cemented
to the skull, along with two intraoral cannulas (IOCs; Katz et al., 2001)
using dental acrylic.

Passive taste administration paradigm

Three days following surgery, each animal began 2 d of adaptation to
handling. Afterward, each animal was placed on a water-restriction reg-
imen (2 h of water/d) for 2 d, acclimatized to the experimental environ-
ment for 2 d, and adapted to 40 ul water deliveries through the IOCs for
another 2 d. Once so acclimated, animals were, once per day, exposed to
the experimental taste array [distilled water, four concentrations of NaCl
(0.01, 0.1, 0.3, 1.0 m), 0.3 M sucrose, and 0.001 M quinine] through a
manifold of fine polyimide tubes inserted to 0.5 mm past the end of one
IOC (eliminating any chance of mixing) and locked onto the dental
acrylic cap. All fluids (including the water rinse, which was delivered to
the contralateral IOC) were delivered under slight nitrogen pressure;
while delivering each taste from one side may have meant not entirely
immediate exposure of all taste buds, the pressure ensured that a brief
release of fluid (~40 ms, the ejection of taste onto the tongue was com-
plete long before any taste-related dynamics appeared in GC responses)
resulted in extensive tongue coverage at reliably short latency (Katz et al.,
2001), and the use of a single manifold ensured essentially identical pre-
sentation of all taste stimuli.

Rats received a minimum of 10 blocks of taste deliveries (six deliveries
per block). Computer-controlled solenoid valves ejected a pseudoran-
domly selected taste directly into the mouth of the rat under nitrogen
pressure once every 30 s. An H,0 rinse was delivered through the con-
tralateral cannula 15 s after each taste delivery. Total fluid delivered was
4.8 ml per 30 min of recording session, after which animals had ad
libitum access to water for 90 min.

Assessing preferences/palatability for the full array of taste stimuli
A set of rats (n = 4) was adapted to handling and placed on a 22 h water
restriction protocol, with water provided in the home cage after han-
dling, adaptation, or testing. Testing took place in the Davis MS-160
“briefaccess” Lickometer rig (DiLog Instruments). During the first 2 d of
habituation, rats were placed in the Davis rig and allowed to drink water
from a single tube continuously for 30 min. On the last 2 d, rats received
periodic brief access (15 s) to one of seven stainless-steel drinking tubes
on a moveable carousel, each filled with water, for 35 min.

Finally, each rat received three 35 min testing sessions, on consecutive
days, during which taste solutions (0.00, 0.01, 0.10, 0.30, and 1.0 M NaCl,
0.3 M sucrose, and 0.001 m quinine HCl) were presented in a (blocked)
randomized order. Presentations began with the automated raising of a
shutter, such that the lick spout was exposed. If no lick was recorded
within 60 s of spout presentation, the shutter closed, and the tube holder
moved on to the next tastant; these empty trials were dropped from the
subsequent analysis. Once a lick was noted (via a low-current circuit), the
solution was presented for 15 s (this guaranteed that lick counts were not
confounded with latency to first lick), after which the shutter came back
down, and a 10 s interval separating each presentation began.

The average number of licks across the 15 s of availability, compared to
that for water, provided us with a measure of preference and palatability
of the tastes (Breslin et al., 1993) without a disproportionate amount of
lick-rate adaptation (Smith et al., 1992); solutions preferred compared to
water are here characterized as “palatable,” whereas solutions that rats
drank less of than water are characterized as “aversive.” There was no
decrement in lick rate across the 35 min sessions, suggesting little influ-
ence of postingestive effects during taste preference assessment (data not
shown).

Electrophysiology

Neural signals were differentially recorded from GC during taste sam-
pling and fed into a parallel processor capable of digitizing up to 32
signals at 40 kHz simultaneously (Plexon). Discriminable action poten-
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Figure 1.

Late-onset cortical activity reflects behavioral responses to the stimuli. 4, The amount that rats choose to consume (in terms of mean number of licks assessed in a brief access task;

Breslin etal., 1993) of each stimulus varies as a function of both the chemical identity and concentration of that stimulus. This schematic distribution serves as the basis for assessing the correlation
with behavioral (consumption-related) choice. B, The trial-averaged, stimulus-aligned responses of three cortical neurons. Typical of such responses, initial activity was not stimulus specific,
selectivity emerging only after ~200 ms (Katz et al., 2001; Piette et al., 2012; Sadacca et al., 2012). Still later, for each neuron, the response became obviously choice related, with the strongest
responses for this neuron to the most aversive stimuli and the weakest to the most palatable stimuli. €, The apparent emergence of choice-related responses in Bis confirmed using a moving-window

analysis of the linear correlation between the numbers of spikes in B and the behavior pattern in A.

tials (>3:1 signal-to-noise ratio) were isolated on-line from each signal
using an amplitude criterion in cooperation with a template algorithm,
and time-stamped records of stimulus onset, spike times, and all sampled
spike waveforms were saved to disk, as was a file of discrimination pa-
rameters. All signals were then subjected to off-line reanalysis incorpo-
rating three-dimensional cluster-cutting techniques, which confirmed or
corrected on-line discriminations. A great deal of previous work has
confirmed that this set of procedures results in the isolation of single-
neuron records (Katz et al., 2001; Fontanini and Katz, 2006).

Analysis and response modeling

We obtained data from seven separate multineuronal recording sessions,
as described above. Identified spiking events were partitioned into 10 ms
bins (250 bins per 2.5 s of poststimulus activity) for analysis. To maintain
equal samples across recording sessions, the first 10 trials of each taste
delivery were included in subsequent analysis.

Palatability correlation and taste identification

To determine the relationship between neural activity and behavior
through time, we calculated the linear correlation across stimuli between
each neuron’s trial-averaged activity and the palatability of the tastant as
measured in the brief access task. A large number of studies have estab-
lished the general palatability function for these stimuli—a function that
is remarkably reliable across different measures, contexts, and physiolog-
ical conditions—but we used previously collected data from our lab
(Sadacca et al., 2012), which showed, as expected, the following order of
palatability, from most pleasing to most aversive: sucrose, 0.1 M NaCl,
0.3 M NaCl, 0.01 m NaCl, 1.0 m NaCl, quinine HCI (the last two of these
stimuli were less palatable than distilled H,O). The inverted U for palat-
ability as a function of NaCl concentration demonstrates that palatability
is a measure of an animal’s response to a stimulus (which takes time to be
determined), rather than a straightforward ingredient of the stimulus;
that is, palatability is a measure of how much or how often an animal

chooses to consume a tastant. Albeit measured in a separate battery of
tests, palatability is equivalent to an average of the animal’s choices across
trials, which we will correlate with an average of each neuron’s activity
across trials.

Results based on this measure are thus intrinsically conservative. We
neither trained our rats to produce stereotyped categorical responses nor
selected trials in which those behaviors were easily recognized as correct;
our inability to remove so-called “error trials,” if it has any effect at all,
serves only to reduce the strength of the correlations between neural
activity and choice. The main finding from this work arises from com-
parisons between, on the one hand, the results of trial averaging when
each trial was aligned to stimulus delivery [producing the peristimulus
time histogram (PSTH)], and, on the other hand, analogous results ob-
served when each trial was aligned to a state transition [producing the
analogous peritransition time histogram (PTTH)]. Regardless of align-
ment, the neural firing rates for each neuron, for each 250 ms window of
activity, were transformed into a neural response vector of length equal
to the number of tastes times the number of trials. A palatability vector of
equal length was then created, with each value of the palatability vector
determined by that taste stimulus’ value on Figure 1A. Stepping this
window in increments of 10 ms, we produced a time series of correlation
coefficients between each neuron’s trial-averaged activity and the palat-
ability (Fig. 1C). The palatability or choice index, I(¢), reported is simply
the mean of the square of the correlation coefficient across neurons,
through time, # (Fig. 2).

To assess the availability of any taste-related information in the neural
ensemble (compared to the presence of palatability-specific informa-
tion), we used a standard linear-discriminant analysis classifier to test the
reliability with which evoked responses to a taste could be identified
among responses to other tastes. Here, we binned neural responses into
20 ms bins and used a linear classifier with a leave-one-out approach,
training the classifier on all but one trial of two pairs of evoked popula-
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tion taste responses (e.g., Trials 1-9 of sucrose
and quinine for all neurons) and tested with
the “left-out” trial (here, Trial 10 of sucrose
and quinine). This analysis was then iterated
for each time bin using the mean of 10 bins of
evoked response per step (200 ms) and for each
combination of exemplar tastes (sucrose, qui-
nine, 0.1 M NaCl, and 1.0 m NaCl).

Characterizing the rise of the palatability
index

Differences between palatability time series
(e.g., PSTH vs PTTH) for population and
single-neuron data were quantified by fitting a
four-parameter sigmoid function to the fol-
lowing palatability index:
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slope (making a/4 our y-axis measure of
slope), B is the “suddenness” of the increase
(equal to the inverse of the period during
which the slope was >78% of maximum), ¢, is
the time when maximal slope is reached, and &
is the offset in minimum palatability correla-
tion from zero (a baseline value). Note that the
combination in the numerator, («/f), denotes
the overall change in palatability across the
transition. To obtain consistent fits for both
population and single-neuron, parameters «
and 3 were completely unconstrained, whereas
parameter f, was restricted to 200 ms around
the time of transition, and & was held to a maximum value of 0.05. In
addition to this fitting, we performed a secondary measure of transition
suddenness: the time taken to transition across 40% of the total jump
from minimum to maximum palatability. Values of this secondary mea-
sure broadly agreed with the fitted 1/8. To make control data aligned to
a different, earlier transition (either an early dominant state or the tran-
sition immediately preceding the identified late state) comparable, the
mean (early) transition time was subtracted, and the data were shifted by
the mean (late) transition time.

Figure 2.

Hidden Markov modeling and model selection

We performed HMM, limiting each analysis to simultaneously recorded
ensemble data, on the basis of its proven ability to characterize neural
activity (Seidemann et al., 1996; Jones et al., 2007; Kemere et al., 2008),
and specifically on the basis of our previous demonstration that taste
responses are well characterized as sequences of ensemble firing rate
states with brief interstate intervals (Jones et al., 2007; Piette et al., 2012).
We prepared our data for HMM by first indexing each neuron in the
ensemble with a scalar (N = 1,2, 3,. .., M). Ifonly one neuron spiked in
a time bin, we assigned the number N to that event, with N = 0 corre-
sponding to no spikes from any neuron. If more than one neuron spiked
in a time bin, we randomly selected one of the spiking neurons for as-
signment to that bin—a highly uncommon occurrence, given the rela-
tively low firing rates, small (10 ms) bins, and small (6—14) ensembles of
neurons.

We used standard MATLAB packages for HMM and used 25 dif-
ferent sets of random starting parameter values as seeds for a standard
model optimization procedure (the Baum—-Welch algorithm; Baum et
al., 1970). The model with maximum log likelihood, or LL (calculated
as the log probability of producing the measured spike trains given the
particular model), was provisionally treated as the optimal character-
ization of ensemble activity, contingent to the application of a model
selection technique [the Akaike information criterion (AIC)], that
penalizes the LL value according to the number of parameters in the
model (the size of the emission matrix minus one column plus the size

0 05 1 15
time from stimulus delivery (s)

Taste identification precedes taste evaluation. The ramp of choice-related activity evident in single neurons (Fig. 10)
is consistent across the entire neural sample (black line; 2 SEM; n = 68), though lower than for individual exemplars because of
the inclusion of nonresponsive neurons in the analysis. This palatability-related firing ramped upward, achieving significance
above baseline at 0.83 s after stimulus (p << 0.05, Tukey—Kramer test). The onset of evaluative coding occurred only long after
tastes could be identified by ensemble activity, as individual taste pairs (gray dashed lines) were reliably discriminated above
chance by 0.4 s following taste delivery, and 100% classification was achieved across all taste pairs (solid gray line) by 0.6 s after
stimulus. The duration of each curve, as determined by the time period spanning between 30 and 70% of the total ramp height, for
taste identification and palatability coding are displayed (horizontal lines) above the individual curves.

of the transition matrix minus one column). While the original LL-
based models always produced better fits to the data than the AIC-
based models, the penalty term provided by the evaluation of the
number of free parameters militated against overfitting the data. Typ-
ically, the AIC method selected four or five states as the maximally
informative number, numbers that accord well with our previous
empirical findings—three states maximum in the first 1.5 s, matching
the number of epochs, and then one to two postconsumption states
(Jones et al., 2007; Piette et al., 2012). We produced a single hidden
Markov model for each ensemble and each tastant. Given this model,
we calculated, for each trial, the probability as a function of time of
the ensemble being in any particular HM state.

Post-HM realignment

For each hidden Markov model, we determined the putative underlying
state with the highest probability of occurring across all trials within a
time window identified, on the basis of Figure 1 and previous work (Katz
etal., 2001; Grossman et al., 2008; Sadacca et al., 2012), as being the time
at which rising ramps of palatability, observed using analyses keyed to
stimulus delivery, reach asymptote (between 0.8-2 s after stimulus).
These states were deemed the most likely candidate “palatability” states.
We next realigned the ensemble data such that the onset times of these
states (calculated as the time bin at which the identified state exceeded 0.5
probability on each trial) was set to be the “zero” time point of each trial.
The few trials in which the onset of this state occurred before 0.1 s fol-
lowing stimulus onset were excluded from this (and all) analysis, as were
paired trials from stimulus-aligned data (to maintain equal trial numbers
between PSTH and PTTH data sets). For two control realignments, data
were zeroed on an earlier state onset: either the state with the highest
probability between 0.25 and 0.8 s after taste delivery (labeled “early”) or
the state immediately before the calculated “late” palatability state for
each model (labeled “prelate”). Once the data had been realigned, we
repeated the above-described palatability analyses that had already been
brought to bear on stimulus-aligned data.
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Monte Carlo analyses

We conducted Monte Carlo analyses to deal with a complementary pair
of issues having to do with the above procedures: (1) the fact that rapid
transitions from low-to-high neural correlations with palatability could
conceivably be produced as an artifact of HMM itself, which will identify
the sharpest transition time even in data for which all identified “transi-
tions” are purely stochastic and noise based, and (2) the fact that the
correlation and HMM procedures will artificially smooth even instanta-
neous transitions to some degree, with the former because of the neces-
sity of data windowing, and the latter because of the imprecision inherent
in estimating the times of hidden state changes on the basis of relatively
sparse point-process data putatively emitted as a function of underlying
state. We therefore generated two sets of 200 control simulations of each
trial in the real data to evaluate these two possibilities and two sets of 100
additional simulations to test an alternative theory, the drift diffusion
model; all four sets of simulated data resulted from probabilistically cho-
sen spike trains that approximated the interspike interval statistics of the
real data, and by design contained essentially the same firing rates (and
therefore produced similar PSTHs) observed in the real data.

PSTH- and shuffle-based control data. The first of these simulations was
produced by assuming a neuron’s spike times in each trial to emerge
purely from the temporally inhomogeneous Poisson processes observed
in the across-trial averaged single neuron responses to each taste (i.e., the
PSTHs); these data matched the trial-averaged real data, but contained
neither between-neuron coherence nor purposefully sudden rate
changes. Thus, in these data sets, the PSTHs were truly (and by defini-
tion) a valid characterization of each trial and therefore tested the possi-
bility that any sharpening of the onset of palatability-related firing was an
artifact of the analysis. The second of these simulations was a trial reshuf-
fling of the original data for each neuron (e.g., pairing Trial 1 of Neuron
1 with Trial 9 of Neuron 2), to again disrupt between-neuron coherence
while preserving the PSTH. Specifically, for each real data set, we created
500 permutations of potential trial-neuron pairings for the ensemble
and selected the 200 that minimized the number of coherent neurons for
each reshuffled trial. We subjected these control data sets to the same
analysis as performed with the original data set, statistically comparing
the transition speed of control data sets with the original.

Coherent step-function control data. The third simulation allowed us to
assess the degree to which the speed of transitions in the realigned real
data differed from the theoretical maximum speed produced by instan-
taneous, correlated changes in firing rates, given the firing rates observed
in our cortical neuron sample. For these 100 data sets, firing rates were
obtained from the mean PTTH during five different response periods
relative to average stimulus onset: (1) a prestimulus period between —1 s
before stimulus and stimulus onset; (2) an early epoch period from r = 0
ms to t = 200 ms; (3) a middle epoch period from ¢ = 300 ms to t = 800
ms; (4) a final period from ¢t = 1200 ms to t = 1400 ms; and (5) a
poststimulus period from ¢ = 2000 ms to ¢+ = 2800 ms. We assumed
coherent, instantaneous jumps in firing rates between these values, with
simulated states lasting 1, 0.2, 0.6, 1.2, and 2.0 s on average; however, the
onset of the second-to-last transition was jittered, with the jitter pulled
from a normal distribution with an SD equal to the SD of the late tran-
sition (413 ms). We again subjected this control data set to analyses
identical to those brought to bear on the real data and compared the
suddenness of the palatability index with those produced by the equiva-
lent analyses of the original data.

Drift diffusion model control data. The fourth simulation was designed
to assess how well a standard model of decision making, the DDV, fits
our observed data. The DDM relies upon neural integrators, which can
be implemented in numerous ways, some of which require fine-tuning
(Wang, 2002; Wong and Wang, 2006) and others of which produce
instantaneous jumps (that are not coherent across the circuit) in neural
firing rates (Koulakov et al., 2002).

The DDM is identical to the step-function control in that it incorpo-
rates the mean firing rates, trial-to-trial variability, and firing-rate corre-
lations across all cells, but differs in that the rates in each trial can ramp in
the manner of a biased random walk. For the DDM to match our data, it
was essential that we included a delay of 500 ms before any ramping of the
decision process could commence. Such an initial delay is much longer
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than that used in standard decision-making models (Ratcliff et al., 2003),
and its inclusion already shifts the DDM toward a model more akin to the
step-function control.

The DDM itself was defined by two parameters, mean time to thresh-
old (T = 0.6 s) and fraction of correct trials (p g rece = 0.975), which
together constrain the stimulus strength, S, and the noise level, o2, of the
decision variable for a given choice threshold (whose arbitrary value, a =
1, simply scales the decision variable, so scales the mapping to firing rates;

Bogacz et al., 2006):
_— a b Sa
= 5 tan 2

1

Pcorrect = —2S8a*

I1+e

The model was mapped into the firing rates of cells by assuming each
cell’s firing rate was a sigmoidal function of the decision variable (the
sigmoid was essential so that rates remained positive) with the sigmoid
set independently for each cell to produce the cell’s pre-palatability-
response firing rate when the decision variable is zero and to produce the
cell’s post-palatability-response firing rate when the decision variable is
at the “correct” threshold, +a. To completely define the parameters of
the sigmoid for each cell, we further assumed the cell’s firing rate to be
bounded between 0 and 110% of the greater of pre- and post-palatability-
response rates.

Thus, in any trial, all cells’ firing rates would coherently follow the
single decision variable for that trial according to the biased random
walk, but the single decision variable was mapped into a sigmoidal firing
rate unique to each cell so as to best match that cell’s observed rate
changes. While the sigmoid functions were typically broad, they do add
nonlinearity, and so make the DDM more step-function-like than if we
assumed firing rates were a linear function of the decision variable. Such
anonlinear mapping was essential to produce the observed firing rates in
the stimulus-aligned data. This fact, combined with our incorporation of
alarge (500 ms) delay before ramping commenced (to match the timing
of the onset in ramping without disrupting other transitions) means that
our test of whether the data were more step-like or more like a ramping
DDM required us to first add two step-like features to the ramping DDM
(the delay and the nonlinearity). Such modifications were essential to
provide a framework in which the DDM was at all capable of fitting the
observed data, but potentially they cause us to underestimate the
difference between DDM-derived and “instantaneously transition-
ing” simulations.

Control data comparison. The above pair of analyses is particularly
felicitous because it simplifies the difficult task of assessing statistical
significance of the phenomena reported here. In each case, the propor-
tion of dummy data sets was a direct indicator of that significance—if, for
instance, the slope of the real data was higher than that of >190 of 200
simulations (each of which is identical in size to the real data), then in a
one-tailed test (which we use here because our hypotheses are explicitly
directional), the p value for the difference between the conditions is
<<0.05.

Finally, to directly compare how well the control data sets fit the real
data, we determined the likelihood that either of the control data sets was
a distribution centered on the real data (z test) and then computed the
likelihood ratio (A) between the optimal and PSTH-derived simulations,
where A = 2 * In(popry) — 2 * In( pppa)»> With significance of the like-
lihood ratio assumed to follow a y? distribution.

Comparison of electromyographic and neural population data

We identified palatability-related oral behaviors (taste reactivity; Grill
and Norgren, 1978; Travers and Norgren, 1986) in jaw-movement elec-
tromyographic (EMG) signals. These behaviors are commonly under-
stood to represent the execution of a consumption decision via the action
of a single central pattern generator in the brainstem: gapes (focused on
here because they are the largest, easiest to isolate motor acts) represent
the movement of fluid toward the front of the tongue for ejection,
whereas lateral tongue protrusions represent the gathering of fluid in the
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back of the mouth for eventual swallowing (this is true regardless of
whether delivery is via IOCs or licking, although the processes are non-
identical, and decisions are almost certainly made faster in a self-
administration context; Samuelsen et al., 2012). While swallowing
technically represents the end of the decision process, it provides a poor
measure of when that decision is actually made ( particularly for egestion/
rejection decisions) for the simple reason that fluid must be gathered in
the back or front of the mouth before swallowing or expelling.

Voltage neuromuscular signals from a bipolar electrode embedded in
the anterior digastric were recorded during sampling of IOC-delivered
tastes. These signals were passed through a differential amplifier (P55;
Grass Technologies), sampled at 1000 kHz, filtered off-line using a two-
pole Butterworth bandpass filter (300 to 500 Hz; Travers and Norgren,
1986), and rectified.

The EMG signatures of gapes were extracted from this signal using a
two-step process: (1) We first identified all mouth movements produced
in the first 2.5 s following taste delivery, extracting the envelope of the
filtered, rectified EMG signal using a 15 Hz low-pass filter; local peaks in
the envelope were identified as mouth movements. The onset and offset
of each movement were defined as the time points at which the magni-
tude of the envelope fell below the mean value of the envelope from the
baseline period (from —1.5 to 0 s relative to taste delivery). (2) We then
trained a quadratic classifier to identify each movement as either a gape
or nongape; movement duration (At between movement onset and oft-
set) and movement frequency (the reciprocal of the longest At between
the peak of a given movement and the peak of each adjacent movement)
differentiated gapes from other mouth movements, as described by
Travers and Norgren (1986). These parameters were plugged into the
quadratic expression, and if the resulting value was less than zero, the
movement was labeled as a gape. The parameters of this automated sort-
ing method were validated by comparison to blind coding of simultane-
ously acquired video (a corpus of 1169 movements, 437 of which were
determined on the video to be gapes) and found to be highly reliable.
Once the gapes were identified, the time of the first gape in a bout was
deemed to represent the onset of gaping and the latency to the decision,
as reflected in behavior emission.

This single-trial measure of decision latency could then be directly
compared to the same-trial latency to the onset of the palatability-related
state, determined in an entirely independent analysis. This state was
identified as described above (although the hidden Markov model was in
this case calculated using 1 ms bins to maximize the temporal precision
with which transitions could be identified), and the latency of that state
was calculated to be the time at which it became the most likely state.

There were two sessions (of 10 in which more than neurons were
simultaneously recorded) for which an interpretable hidden Markov
model solution (one with clean sequences of states) could not be reached;
these sessions were disregarded for purposes of this analysis. Even in the
other sessions, there was a small subset of trials in which the palatability-
related state became dominant twice; for this reason, we restricted our
analysis such that each trial contributed only one ensemble state latency,
by disregarding very early (<250 ms) and very late (>2000 ms) state
onsets. There were also rare trials in which the most likely palatability-
related state simply did not appear; these trials were disregarded, since
they did not supply a transition time point.

The results of this brain/behavior comparison were evaluated in mul-
tiple ways. First, a simple Pearson correlation between transition and
decision latencies allowed us to determine whether there was a statisti-
cally significant linear relationship between those latencies; the sign of
the lag revealed whether neural transitions preceded decisions or vice
versa. We also directly compared the two distributions of decision la-
tency, one in relation to stimulus presentation and one in relation to the
neural state transition, using a X 2 test. Since multirat distributions were
neither normal nor similar in shape, we analyzed medians and interquar-
tile ranges (the range of the middle 50% of scores) to ascertain whether
neural state transitions predict decisions better than trial averaging: im-
provements in predictability should be reflected in larger concentrations
of scores around a single value, a more sharply peaked distribution of
latency.
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Results

Consumption-choice-related cortical activity appears only
after stimulus-discriminative activity, emerging across 500
ms in single-neuron analyses aligned to stimulus delivery

We initially recorded the responses of seven primary cortical en-
sembles (10 * 2 single neurons per ensemble) to deliveries of
taste stimuli that varied widely in the readiness with which they
are consumed (a directly choice-related property known as “pal-
atability,” Fig. 1A). In our (and prior) tests, sucrose and 0.1 M
NaCl are consumed avidly (they evoke prolonged licking),
whereas quinine and 1.0 M NaCl are more likely to be avoided
(they elicit little licking). Low NaCl concentrations were moder-
ately pleasing and largely similar to water (data not shown). The
decision to consume more or less avidly (Fig. 1A) dovetails reli-
ably with other indicators of this naturalistic choice; sucrose on
the tongue, for instance, causes swallowing-related reflex behav-
iors, whereas quinine on the tongue causes rejection-related be-
haviors (Grill and Norgren, 1978). Figure 1B presents taste
PSTHs (that is, single-neuron responses aligned to stimulus de-
livery and averaged across trials) for two cortical neurons. These
responses were in good accord with previous reports (Katz et al.,
2001; Piette et al., 2012; Sadacca et al., 2012): following initial
periods of nonspecific firing, firing rates became (at ~150-200
ms after delivery) distinct for different tastes; consistent with
previous studies, these (and many other) neurons responded to
multiple tastes (Yamamoto et al., 1984; Yaxley et al., 1990; Smith-
Swintosky et al., 1991; Katz et al., 2001; Stapleton et al., 2006; but
see Chen et al., 2011) in a manner that has been shown to reflect
physical properties (their distinct chemical identities, concentra-
tions, and degrees of mixture) of the stimuli (Katz et al., 2001;
Yoshida and Katz, 2011; Sadacca et al., 2012; Maier and Katz,
2013).

Well after these representative responses became stimulus
specific, they could be observed to shift again (500—-1100 ms fol-
lowing stimulus delivery), at which point they came to reflect
stimulus palatability, as measured by the behavioral function in
Figure 1A. (In the case of the first neuron shown in Figure 1B, the
most vigorous response in this later period was to aversive stim-
uli; the opposite pattern was observed in the second neuron
shown in Figure 1B.) To quantify this finding among the re-
corded population, we calculated moving-window correlations
between the palatability of each stimulus and spike-rate re-
sponses to these same stimuli (Sadacca et al., 2012). Figure 1C
shows that for both sets of responses displayed in Figure 1B, the
correlation between palatability and firing rate was stably low and
flat until ~0.5 s following stimulus delivery, occurring well after
the neurons had begun to fire distinctively to different tastes, at
which time it appeared to ramp linearly upward and to peak at or
after 1.0 s.

This result was representative of the full data set (Fig. 2), de-
spite the inclusion of unresponsive neurons in the analysis
(which necessarily lowered the net magnitude of the palatability
effect; Fig. 2, black line). Palatability-related firing ramped up-
ward between ~0.5 and 1.1 s after stimulus delivery, achieving
significance at 0.83 s (p < 0.05, Tukey—Kramer test), just before
the average behavioral latency (Travers and Norgren, 1986): at
peak, palatability accounted for 86% of the GC response variabil-
ity; the firing rates of 41% of the recorded single neurons (N =
28) were significantly linearly correlated with palatability during
this response epoch (for 67% of these correlations with palatabil-
ity, the correlation was negative; for more details, see Sadacca et
al.,, 2012).
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Figure 3.  Ensemble cortical responses form reliable sequences of states with coherent, trial-specific state-to-state transition
times. A, Each neuron’s spiking probability (per 10 ms) is plotted for each of five states (color coded to B) that occurred in the hidden
Markov model solution derived for sucrose. B, HMM-determined probability that a set of simultaneously recorded cortical neurons
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Furthermore, palatability/consumption-
related firing appears well after activity
that is stimulus specific (Fig. 2, black vs
gray traces). The emergence of palatability
lags behind the emergence of pairwise dis-
criminability by several hundred millisec-
onds, regardless of whether examination
is keyed to the 30 or 70% points in the
curves (30 or 70% of the total increase in
palatability or discriminability; Fig. 2,
horizontal lines), when the curves achieve
significance, or the points of maximum
slope. In fact, the discriminability curve
reaches asymptote (at 100% correct, ac-
cording to a standard classification analy-
sis) >500 ms before the average time of
choice behavior (whereas the palatability
curve arrives at asymptote very close to
the average time of behavior emission; see
later section, The sudden onset of
palatability-related firing robustly pre-
dicts the latency of choice-related behav-
ior in single trials).

Single-trial emergence of consumption-
related activity is more abrupt than that
visible in PSTHs according to ensemble
analysis

When we used HMM to reanalyze these
neural data in terms of the responses of
simultaneously recorded ensembles of
neurons, the >500 ms ramp of choice-
related activity apparent in Figures 1 and 2
was revealed to poorly reflect single-trial
responses. The activity of cortical ensem-
bles was instead well characterized as reli-
able sequences of states in which each
state was defined as a particular set of fir-
ing rates across the ensemble (Fig. 3A).
Examples of this sequence are shown for
one ensemble and one taste in Figure 3B
(solid lines in Fig. 3B are state probabili-
ties, which typically transitioned from low
to high with great suddenness).

<«

achieves each firing-rate state (colored curves), plotted to-
getherwith ensemble spiking activity (each vertical notch rep-
resents a spike), for four consecutive trials of one stimulus
(sucrose). The same sequence was identified in most trials
(here, the first 3 of 4 trials), but the times of state-to-state
transitions varied from trial to trial [periods of high state like-
lihood (>80%) are highlighted in color]. C, The time courses
of the HMM-derived late state (i.e., the state dominant after
1'5) probability for all sucrose trials in one session, revealing
both the reliability and suddenness of this state’s emergence
(it progresses from 0 probability to 1.0 probability across a
<C100 ms period in almost every trial) and the considerable
variability in the state’s onset latency from trial to trial. The
solid black line shows the time-average probability across tri-
als, which forms a gradual ramp with a time course reminis-
cent of Figure 2. D, The distribution of identified late state
onsets across all modeled ensembles (42 models total).
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Figure 4.

Realignment of cortical ensemble data to the appropriate HM state onsets sharpens the emergence of choice-related firing. A, The emergence of choice-related firing in ensemble

activity is sharper following realignment of each trial’s spiking activity to the onset of the state identified as dominant at 1 s after stimulus delivery (PTTH; red dashed line) than when that activity
is aligned to stimulus delivery (PSTH; black dashed line). Sigmoidal fits to each time series are overlain (solid lines) and provide estimates for the speed with which activity transitions to choice
relatedness. B, The values and 95% confidence intervals for the duration of the transition from low levels of choice-related firing to asymptotic choice-related firing (the time across which the slope
of thefit sigmoid curveis highest, parameter 1/3) for PSTH and PTTH data, in addition to two control realignments: data realigned to either the state prior to the identified late state (prelate aligned)
or the state dominant during taste identification (early aligned). In all cases, real data transitioned more quickly than the PSTH data (Zpcp,, = 10.6, ppsry = 0.001) or either of the control alignments

(Zeasry = 64 Peapry > 0.001, Zopeyare = 3.5, Pperare > 0.001).

The same sequence of states was observed in an average of
73% of the trials of any one stimulus (Fig. 3B, examples 1-3), and
in 88% of the trials, the sequence was identical for at least three of
the first four state transitions. In addition, there was typically one
particular state that characterized most single-trial responses in
the >1 s period (this single state was dominant in 78% of trials),
the time at which palatability-related firing reached asymptote
(Fig. 2). Whereas the order of states was reliable, the timing of
state-to-state transition latencies varied widely from trial to trial,
such that the state that dominated the 1-2 s period appeared at
different latencies on different trials (late-state onset for all trials
of the model of Fig. 3B is shown in C). When calculated for all
trials of taste delivery across all ensembles, the median latency of
state appearance was 0.8 s (20 ms, SEM; Fig. 3D), a good match
for the time point at which the correlation with behavioral choice
became significant in across-trial and across-neuron averages (Figs.
1, 2). We therefore refer to the state dominant after this transition
(i.e., the state that is most probable for the period between 0.8 and
2.0 s in each model) as the putative “choice-related state.” The state
that dominates responses before this time point appeared, on aver-
age, 0.1 s after stimulus presentation, too early to be reasonably as-
sociated with choice behavior (see later section, The sudden onset of
palatability-related firing robustly predicts the latency of choice-
related behavior in single trials).

The trial-averaged probability of this late state (Fig. 3C, solid
line) rose slowly and linearly across the period between 0.5 and
1.0 s, mirroring the emergence of choice-related firing in Figures
1 and 2, despite the fact that in single trials the state appeared
suddenly. It is therefore reasonable to ask whether the slow emer-
gence of choice-related firing itself poorly reflects single-trial en-

semble activity. We tested this possibility by realigning trials to
the onset of the transition into the late, choice-related state, hy-
pothesizing that this relatively subtle realignment of the data
would sharpen the transition into choice-related firing observed
in PSTHs, significantly steepening the slope of the brain/behavior
correlation. We calculated moving-window correlations between
neural firing rates and palatability for each neuron in the re-
aligned ensemble (just as had been done for data aligned to stim-
ulus delivery; Fig. 2) and integrated these correlations across
ensembles as a population measure of the choice relatedness of
neural activity.

After realignment, the correlation with choice did emerge
more suddenly than the same data aligned to stimulus onset (Fig.
4A). We quantified this finding by fitting sigmoidal curves to
both stimulus-aligned and transition-aligned data and found that
the maximum transition duration (defined as 1/, a parameter
that provides an unbiased estimate of the speed of transition) of
the transition from low to high correlation was significantly
shorter for transition-aligned data than stimulus-aligned data
(Zpsru = 10.6, ppgryy = 0.001; Fig. 4B). The increase in sudden-
ness of the transition was more than threefold (Fig. 4B, compare
black, red bars); most of the apparent slow accumulation of
palatability-related activity observed in Figure 2 vanished with-
out across-trial averaging.

We performed the same realignment using two estimations of
an earlier state transition, the state dominant just before the iden-
tified late state (termed “prelate”) and the state dominant during
the period of identity coding (termed “early”), and repeated the
analysis; data aligned to the late state transitioned more quickly
than both controls (Zgapiy = 6.4, Prarry = 0.001, Zpgpiate =
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Figure5.  The sharpening of choice-related firing by alignment to HM states is significantly greater than expected by chance. 4,
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lighter traces) and were modeled using HMM (PTTH shuffled; darker maroon traces). Realignment produced a modest
sharpening in this control data. For a second control data set (as plotted in 4), spike trains were simulated from the PSTHs
of real neurons, maintaining the average activity of the ensemble, minus moment-to-moment correlations among neurons
(PSTH simulation; light gray traces). These simulated data were also modeled using HMM (PTTH simulation; dark gray
traces). Again, realignment caused a modest sharpening of choice-related activity. €, The results of sharpening 100
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3.5, pprecate > 0.001; Fig. 4B), neither of
which sharpened the transition signifi-
cantly (i.e., compared to nonrealigned).

Of course, just as across-trial averaging
may smooth data into gradual ramps, so
may HMM identify spuriously sharp
jumps in noisy data that in reality contain
no coherent transitions. To evaluate the
impact that this possible confound might
have had on our conclusions, we pro-
duced and analyzed two control data sets:
the first of these was a neuron-by-neuron
reshuffling of the real data trials (which
thus preserved any irregularities in spik-
ing that might have contributed to the
performance of the hidden Markov
model, but disrupted trial-to-trial coher-
ence among neuron pairs; Jones et al,
2007; Fig. 5A, red traces); the second was a
direct simulation of the cortical data set
derived from the neurons’ empirically ob-
served PSTHs (with randomly chosen
spike times); two such simulated neu-
rons are shown in Figure 5A (gray
traces). For each of these simulations,
single-neuron spike rates closely resembled
those observed in the experimental data,
lacking (by design) only trial-specific
dynamics.

We produced 200 versions of each
control data set and subjected them to the
same analyses brought to bear on the real
data (i.e., those related to Fig. 4). The re-
sults of these analyses are shown in Figure
5, B and C: for both the shuffled (Fig. 5B,
top) and simulated (bottom) data, the
emergence of significant correlations with
palatability was only slightly increased by
realignment to hidden Markov model
late-state onset. When fit with sigmoid
functions using the same procedure
brought to bear on the data in Figure 4A,
the onset of palatability-related firing in
data aligned to state transition is sharper
for the real cortical ensembles than for
either the PSTH-based simulation or
trial-shuffled controls, an appearance
confirmed by statistical analysis of the
transition duration of control simulations
to that of the real data (Fig. 5C; pgimulation
< 0.05, pahufiea < 0.05, one-tailed test; 7
0f200 and 4 of 200 data sets, respectively);
control data sets almost never transi-
tioned as suddenly as the real transition-
aligned data.

As a secondary check on the reason-
ableness of our fitting of suddenness, we
also calculated the time required to pass
from 30 to 70% of the total change in pal-
atability. This analysis yielded quantita-
tively similar results (pgueqa < 0.05,
Psimulated < 0.05, one-tailed test; 0 of 200
and 1 of 200 data sets, respectively), fur-
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ther supporting our hypothesis that corti-
cal neural ensembles transition suddenly
into a coherent “palatability-rich” state.
The true speed of this transition is ob-
scured (i.e., slowed by a factor of 2.5) by
(1) across-trial averaging of the data and
(2) the concomitant treatment of single
neurons as independent units of analysis.

The onset of palatability-related
cortical firing coding is more like a step
function than a ramp of firing rates.
The above results suggest that PSTH-
based analyses mischaracterize the time
scale of the dynamics of ingestive deci-
sions, and that the entirety of the transi-
tion into choice-related firing is contained
within, at most, a 150-200 ms period, a
short enough time scale to suggest that it
does not represent an integrative ramp
(Miller and Katz, 2010; Shadlen and New-
some, 2001). It is also possible, however,
that the brief period of transition reflects a
genuine, albeit swift, ramping of firing
rates, such as has been suggested to occur
when an animal is making very easy per-
ceptual decisions (Hanes and Schall, 1996;
Ratcliff et al., 2003; Uchida and Mainen,
2003), and that might be expected dur-
ing similar “identification judgments” of
tastes (Weiss and Di Lorenzo, 2012; Perez
et al., 2013). In what follows, we contrast
these possibilities.

Although consumption decisions made
in this context surely qualify as “easy,”
there are several aspects of the data already
described that differ radically from that
observed during the typical observed
ramps underlying other so-called “easy
decisions.” They are far too long in la-
tency, for instance, inappropriately vari-
able in onset latency, and preceded by far
too lengthy epochs of taste-specific but
decision-independent neural activity (see
Discussion). It is therefore reasonable to
hypothesize that the underpinnings of
consumption decisions observed in GC
may be more “step-like” than “ramp-
like.” To more rigorously test this hypoth-
esis, however, it is necessary to simulate
data using stepping and ramping models,
and then to directly, statistically compare
the distribution of differences between the
responses of real cortical ensembles and
each simulation.

We therefore produced 100 sets of
simulated ensemble data reflecting the
output of the standard ramping model
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used to describe perceptual decision making (the DDM model; ity and changes in firing rate in the real data, such that our anal-
Fig. 6 A, B, green traces), in which the transition into palatability-  ysis was, if anything, biased to maximize the performance of the
related spiking was determined relative to a decision variable that ~DDM (for details, see Materials and Methods). In parallel, we
performed a biased random walk toward a threshold. We took  produced another 100 sets of simulated ensemble data in which
care to choose parameters that matched the ramping of palatabil- ~ the determinant of that transition was an instantaneous step
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function, the time of which was chosen to be identical to those
observed in the real data (the optimally steep, or OPTI, model;
Fig. 6 A, B, blue traces). We then ran precisely the same analyses
on both of these sets of model-based simulations that had already
been performed on the real data and asked whether the increase
in the suddenness with which palatability-related activity
emerged in our real data better reflected a ramp or a step func-
tion.

The results of these analyses are clear from examination of
Figure 6, B and C. First, HMM and subsequent realignment in-
creased the suddenness of palatability-related firing for data syn-
thesized from each model, as expected (Fig. 6B, green traces).
Second, and again as expected, the estimation and binning pro-
cedures that are an intrinsic part of HMM and correlation anal-
ysis necessarily introduced an apparent brief ramp of correlation
even in OPTI simulations (Fig. 6B, blue traces), despite the fact
that firing rates actually changed instantaneously. Third, transi-
tions into palatability-related firing for realigned OPTI simula-
tions were, on average, no steeper than those of real cortical
ensembles; the distribution of differences between the real data
and OPTI simulations was centered on zero (Fig. 6C, blue bars),
whereas the distribution of differences between the real date and
DDM simulations was shifted to the right on the x-axis of Figure
6C (reflecting the fact that most DDM simulations transitioned
less suddenly). We again calculated the time required to pass
from 30 to 70% of the total change in palatability as a validity
check of this suddenness result, and again found quantitatively
similar results.

Our hypothesis is that the two models should differ in their fit
to the real data; therefore, we performed several tests directly
comparing the distributions in Figure 6C. First, we calculated the
likelihood ratio (A) of the probabilities of either simulation hav-
ing a median transition duration equivalent to that of the real
data (two-tailed Wilcoxon sign-rank test). The difference be-
tween these likelihoods was significant (Agpr.ppym = 41.8, p <
0.001). Similarly, the two distributions of differences between the
model data and the cortical ensembles were statistically different
according to a two-sample Kolmogorov—Smirnov test (D = 0.33,
p > 0.001). Despite the impossibility of instantaneous change in
a real system (dynamical or otherwise; see Discussion), the step
function model produces data more like our experimental data
than does the integrator model; that is, data collected as rats
prepared to consume or expel fluid appear closer to an instanta-
neous step function than a ramp.

The sudden onset of palatability-related firing robustly
predicts the latency of choice-related behavior in single trials.
The above data and analyses suggest that coherent neural ensem-
ble activity in GC related to the making of naturalistic consump-
tion decisions appears suddenly in single trials, with different
latencies on different trials, not as an integrative ramp. Lacking
from the above analysis, however, are the actual decisions that
were made in the individual trials themselves, as the palatability
measurement used so far is an average of decisions made across
trials, compiled from a session separate from neural recordings,
and thus offers no information about the actual timing of an
actual real-time choice. To further test our hypothesis that deci-
sion making in GC is well described as occurring in a sudden
transition (a “moment of insight”) with trial-specific timing, we
asked whether the latency of that transition predicts the making
of the decision itself in that trial.

To answer this question, we collected an additional data set
(11 sessions from nine rats) in which we simultaneously recorded
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the neural activity of GC ensembles and EMG activity of a jaw-
movement muscle (the anterior digastric). This muscle is acti-
vated to produce consumption/rejection behaviors, and thus
allows us to directly correlate the occurrence of the transition into
palatability-related firing and the occurrence of the behavioral
decision itself. For this report, we focus on the choice to reject
(because it is easiest to reliably identify the occurrence of rhyth-
mic rejection behavior, termed gapes; Travers and Norgren,
1986).

If the hypothesis that neural state transitions into choice-
related activity drive consumption decisions is to be supported,
then the large trial-to-trial variability of these neural ensemble
transitions should reliably predict the (similarly large) trial-to-
trial variability of choice behavior latency. Figure 7A shows four
consecutive quinine trials (i.e., separated only by trials of differ-
ent tastes) from one session. The left edge represents the time at
which the stimulus was presented, the dashed red line represents
the likelihood of the palatability-related state described above,
and the short vertical hash marks show individual gapes within a
rhythmic bout.

Note that the onset time of the choice-related state appears
well linked to the time at which the decision is expressed in be-
havior (i.e., the appearance of the first gape), with earlier transi-
tions to the palatability-related state occurring in the same trials
that showed faster reaction times. For these four trials, the latency
to decision could be as little as 0.5 s after stimulus presentation, or
as long as 1.2 s (a 0.7 s spread); the transition into the putative
choice-related state tracked this variability and predicted the be-
havior. Figure 7B summarizes all data for the session from which
these trials were culled, plotting the latency of neural state tran-
sition (x-axis) and latency of behavior ( y-axis) for all 30 quinine
presentations. The heavy diagonal dashed line bisecting the graph
shows where trials would fall if those latencies were simultaneous.
The decision was in most cases (88% of the trials) expressed only
after the neural state transition occurred; in 79% (n = 22) of
those trials, the decision was expressed in behavior in a narrow
band of time following the state transition (note the off-unity
diagonal line). This means that, for this session, knowing the time
of the transition made it possible to predict the time of response
onset in individual trials, despite the fact that on some trials the
decision was made in <500 ms and in other trials in >1500 ms;
59% of the trial-to-trial variability in decision time could be ac-
counted for simply by predicting that behavior would occur 293
ms after the transition was detected.

This session, while of particularly high quality, represented
the entire data set (eight sessions, after one session was removed
for only having two single neurons, and after two were removed
because HMM failed to converge on interpretable solutions) well.
Across all trials in which the operative state change occurred
between 250 and 1600 ms of taste presentation, the brain—behav-
ior correlation was 0.58 (p < 0.001), with a mean lag from
ensemble transition to decision of 298 ms. Moreover, the latency-
from-transition data were more sharply peaked than the
stimulus-aligned data (X* = 108.8, p < 0.0001), reflecting the
fact that decision-related behavior is better predicted from en-
semble transition than from stimulus presentation time (i.e., the
average latency poorly characterizes taste decision making).

Although these analyses are compelling, the distributions
of decision latencies, transition latencies, and transition-to-
decision latencies combined across rats were neither normal nor
similar, and thus means and correlations might not provide an
ideal characterization of the data. We therefore directly com-
pared the distributions, quantifying the variability of predictions
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(state probability on the y-axis). The state represented by a dashed red line is the palatability-related state. Overlain on this presentation are the times at which the rat gaped (vertical hash marks).
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in terms of the medians and interquartile ranges (Fig. 7C; the
main panel shows the data normalized for the fact that the lag
distribution necessarily has a larger range than the distribution of
latencies related to stimulus presentation, and the inset shows the
raw data). This analysis specifically revealed that behavior was
much better predicted by state transitions than stimulus onset:
50% of the distribution (i.e., the interquartile range) of the lag
between state transition times and behavioral latency was con-
tained in an interval around the median that was less than half the
size of the interquartile range of the same distribution calculated
using shuffled transition times (p < 0.03).

Finally, additional investigation confirmed the significant re-
lationship between the onset of decision-related behavior and the
attainment of the specific cortical state under investigation. In
over 80% of individual trials across the entire 11-session data set
(without any dropping of sessions), decisions were made (i.e., the
first gape was produced) following the transition into a single
state—a result that retained significance (p < 10~ '°, binomial
test, N = 153) when differences in state dwell times were con-
trolled for. Furthermore, while gapes occurred in bouts that
could last a full second, across the entire data set some 75% of
these gapes occurred in the same state (p < 10 ~'°, binomial test,
N = 570).

Together, these results suggest that our single-trial ensemble
coding measure of transitions into palatability-related firing does
indeed reflect the making of consumption decisions, and so the
suddenness of such changes in neural activity is likely a reason-

able measure of the suddenness with which such choices are
made.

Discussion

In naturalistic situations, animals make many simple decisions in
seeming moments of “insight” (Sternberg and Davidson, 1995;
Kounios et al., 2006, 2008) that lag far behind stimulus identifi-
cation; such slow decision processes tend to be less about what the
stimulus is than they are about how the animal currently plans to
respond about the stimulus; such responses are easily modified
by context and experience, and often follow external stimulus
presentation only with highly variable latencies. It is entirely pos-
sible that the latency of these decisions represent the time point at
which a ramping neural function reaches some threshold, but, at
least with regard to the consumption decisions studied here, they
are reflected by coherent changes in the firing rates of ensembles
of sensory cortical neurons that occur suddenly and at different
latencies in different trials.

These cortical transitions are not well described as “fast
ramps.” They occur far later (three times the average latency, in
fact) than similarly “easy” perceptual decisions described in the
primate literature (Heekeren et al., 2004; de Lafuente and Romo,
2006; Philiastides and Sajda, 2006). Long before these transitions
into (linearly) decision-predictive firing occur, neural responses
already indicate the identity of the stimulus; that is, the accumu-
lation of stimulus-related firing reaches asymptote before
decision-related firing appears (Fig. 2; Katz et al., 2001; Sadacca et
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al., 2012). In contrast, ramps seen during certain primate percep-
tual decision-making tasks represent precisely these accumula-
tions of stimulus-related firing, and are ubiquitously preceded
only by information-poor transients. In the responses observed
here, such transients precede even the earlier taste-specific states,
and only the third “epoch” linearly predicts upcoming behavior
(Katz et al., 2001; Sadacca et al., 2012; Moran and Katz, 2014).

More to the point, cortical ensembles respond to gustatory
stimuli in a manner that is more similar to simulations in which
decision-related firing appears in an instantaneous transition
than they are to ramping data simulated from either PSTHs or an
integrator model; in fact, the emergence of choice-related firing is
indistinguishable from a step function, and the timing of that
transition predicts when the decision is reflected in behavior. The
gradual ramps that are apparent in across-trial averages of GC
responses are in fact poor reflections of single-trial ensemble ac-
tivity, which “hops” into a decision-related state at different la-
tencies on different trials. A previous publication reached similar
conclusions regarding decision-related activity in the classic pri-
mate motion-detection task (Latimer et al., 2015).

Nonetheless, it must be noted that our results are perfectly
compatible with the possibility that genuine ramps occur else-
where in the taste neuroaxis. Indeed, it is possible that integration
occurs in a downstream region, and that the result of that inte-
gration, the motor plan to consume or reject, reaches sensory
cortex (in which firing then reflects the crossing of the decision
threshold) via feedback. Although our work on other taste-
responsive regions (central amygdala, basolateral amygdala, and
lateral hypothalamus) has thus far failed to turn up any obvious
evidence for such a site of integration (Fontanini et al., 2009;
Sadacca et al., 2012; Li et al., 2013), it is likely that a decision
requiring 500—-1000 ms of processing time brings into play a
relatively distributed circuit. This assertion is consistent with the
extant literature, which makes it clear that the most basic inges-
tive/egestive responses can be supported by the rodent brainstem
alone (Grill and Norgren, 1978), but that in the intact rat, the
forebrain, including GC, is a part of palatability-related decision-
making circuitry (Sasamoto et al., 1990; Zhang and Sasamoto,
1990; Berridge and Valenstein, 1991; Kiefer and Orr, 1992;
Shammah-Lagnado et al., 1992; Travers et al., 1997; Schafe and
Bernstein, 1998; Stehberg et al., 2011; Moraga-Amaro et al,
2014).

In fact, it is clear that feedback from basolateral amygdala
(BLA) is vital for the cortical process described here: BLA re-
sponses become palatability-related early, whereas these re-
sponses are far too early (800 ms before behavior; Fontanini et al.,
2009) to be reasonably thought of as reflecting the completion of
a decision-making process, though they are nonetheless neces-
sary for this process, in that inactivation of BLA eliminates most
decision-related activity in GC (Piette et al., 2012). Thus, al-
though we have no evidence that the GC responses described here
represent “efference copy” per se, they undoubtedly make vital
use of “top-down” feedback. In that regard, our results are anal-
ogous to those reported by Romo et al. (2002), who observed
responses in secondary somatosensory cortex that, across 0.5 s of
poststimulus time, transitioned from being sensory- to response-
related; these responses, too, appear not to reflect obvious effer-
ence from motor planning regions, but were conjectured to
require feedback from areas involved in executive processing.

It is also worth considering the possibility that consumption
decisions are better thought of under the aegis of purely nonin-
tegrating models, sometimes called “hopping” or “jumping”
models. Such models have been used to explain the neural under-
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pinnings of many other “postperceptual” choice phenomena
(Kemere et al., 2008; Insabato et al., 2010; Rolls et al., 2010; Deco
et al.,, 2013), as well as bistable perception (Deco et al., 2007;
Moreno-Bote et al., 2007), “changes of mind” (Bollimunta et al.,
2012), and Bayesian inference through sampling (Moreno-Bote
et al., 2007, 2011), and have been shown to outperform perfect
integrator models under certain conditions (Miller and Katz,
2013). Evidence suggesting that we might be recording from a
network of this sort is found in the fact that the latency of firing
rate transitions is much more variable than the transition width
itself; this aspect of the data runs counter to models employing
integration of evidence, but is a reliable feature of attractor-
hopping models (Miller and Katz, 2010).

However, even if we entertain the possibility that the con-
sumption decisions examined here work according to an
attractor-hopping model, we would not want to argue that inte-
gration does not occur in most studied contexts. Perceptual de-
cision making, for instance, naturally lends itself to integration, as
novel stimulus information is acquired with each passing mo-
ment (Halpern and Tapper, 1971; Shadlen and Newsome, 2001;
Uchida and Mainen, 2003; Kepecs et al., 2006; Stapleton et al.,
2006; Kiani et al., 2008; Bowman et al., 2012). Furthermore, the
weeks to months of training required for perceptual decision-
making tasks (training that is not necessary for consumption
decisions) allows for the extensive fine-tuning of connection
strengths that characterize (Seung, 1996; Wang, 2002) and opti-
mize integrator circuits (Bogacz et al., 2006; Miller and Katz,
2010, 2013).

Finally, even if an attractor-like “hopping” model best ex-
plains decision making in the consumption context, it is simplis-
tic to think that real neuronal networks actually transition with
perfect instantaneity from one state to another. Conduction
delays and other physical properties will slow transitions; further-
more, dynamics arise on a slower time scale than that of single-
neuron responses when an attractor-based circuit transitions
between two states (Gillespie, 1992). Thus, although we observed
no significant differences between the real data and step-function
simulations, the real transitions probably take a certain finite
amount of time, reflecting intrinsic circuit dynamics.

Trial-specific multiple-neuron analyses (Kass et al., 2005;
Lawhern et al., 2010), such as HMM (Abeles et al., 1995; Jones et
al., 2007; Kemere et al., 2008; Escola et al., 2011; Ponce-Alvarez et
al., 2012), even with its simplifications of uncorrelated firing
within states and precise simultaneity of firing rate changes across
whole ensembles, and models inspired by them to reproduce
substantial across-trial variability in network activity (Deco and
Romo, 2008; Deco et al., 2009), constitute a large advance in the
direction of understanding naturalistic decisions as they are
made in the moment. Our data contribute to a growing literature
indicating that temporally distinct, discrete states of neural activ-
ity play an important role in cortical sensory coding and produc-
tion of behavioral responses.
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